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GENIE
• Generates Events for Neutrino Interaction Experiments. 

• http://genie.hepforge.org 

• Well-engineered C++ software framework built on sound OO-
principles and design patterns. (The Gang of Four is 
omnipresent.) 

• Propagates a flux of neutrinos (specified by function, 
histogram, or ntuple) through a geometry (Geant4-
compatible) and simulates the initial interaction and 
propagation of hard vertex products through the nuclear 
medium. Geant4 takes over when particles leave the 
nucleus. 

• ROOT provides many core utilities. GENIE also heavily 
leverages other HEP and FOS software - LHAPDF, GSL, 
Pythia, log4cpp, etc.
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GENIE at FNAL
• GENIE is the primary event generator for: 

• ArgoNeut 

• LAr1-ND 

• LBNE 

• MicroBooNE 

• MINERvA 

• NOvA 

• GENIE is also being considered for special 
studies by MINOS and MiniBooNE (they use previous 
generation software for their main generators).
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Software Dependencies

• GENIE uses ROOT (5, eventually 6), Pythia(6, 
eventually 8), LHAPDF (5, eventually 6), log4cpp, 
GSL. 

• Libraries: libstdc++, libc, libgcc, linux-vdso, 
libm, ld-linux-x86-64, libxml2 ... possibly not 
complete (ROOT, etc. have requirements). 

• GENIE does not (yet) use any features from C++11. 

• Generally, building on Scientific Linux is easy. 

• Building 32-bit is also possible.
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> ./cloc-1.60.pl R-2_8_0/
    3285 text files.
    3200 unique files.                                          
    7197 files ignored.

http://cloc.sourceforge.net v 1.60  T=113.14 s (11.3 files/s, 4119.1 lines/s)
--------------------------------------------------------------------------------
Language                      files          blank        comment           code
--------------------------------------------------------------------------------
C++                             525          30478          37587         176349
XML                             125          21895           2144         147176
C/C++ Header                    504           9052           8118          22282
Perl                             28            456           1469           3620
make                             47            514            485           1651
Bourne Shell                     34            157            334           1059
Bourne Again Shell                2            145            127            727
SQL                              12             37              0            117
--------------------------------------------------------------------------------
SUM:                           1277          62734          50264         352981
--------------------------------------------------------------------------------

There is a lot of configuration XML and experimental 
data packaged for the validation framework.

http://cloc.sourceforge.net
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Basic Goals
• The goal is a "DC operation" with occasional spikes 

around the time of a new release (twice annually): 

• Nightly simple tests (build, unit tests) 

• Weekly / Nightly (eventually... maybe faster) 
integration branch full physics validation test 

• The validation will grow in physics complexity over 
time, but operational complexity should be ~flat. 

• Each new validation app will have similar inputs/
outputs and interfaces. 

• Push-button physics validations of the development 
branch  

• Global tuning (model variation, physics validation, fit 
for optimal parameters) may require the OSG.
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Scripting Framework

• Six Stages: 

• Build 

• Unit Tests (Eventually) 

• Generate Cross Sections (In: NA; Out: XML) 

• Generate Physics Predictions (In: XML, Geometry, Flux; Out: ROOT Ntuples) 

• Run Data/MC Comparison Apps (In ROOT Ntuples; Out ROOT Ntuples, PDFs)  

• Compare outputs to previous data/MC comparisons / Study global behavior (In 
ROOT Ntuples; Out ROOT Ntuples, PDFs) 

• Each step depends on the previous step succeeding. 

• We plan on using the Central Build Service to coordinate the flow from one stage 
to the next, but each stage will have its own script.
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Build
• Script in hand that does green-field builds 

with minimal checks for previously installed 
3rd party codes. 

• Currently assumes x86_64. 

• Not CVMFS aware. 

• Bash. Willing to rewrite into Python - it is 
missing some functionality anyway, e.g., how 
to declare files to SAM, etc.  

• Requires Git, wget, gcc 4.1+ (can probably 
go lower), gfortran, Python (2.6?) for the 
full stack (ROOT + Pythia6 + LHAPDF5).
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Generate Cross 
Sections

• "Bootstrap Option": Keep a set of splines in /pnfs/data(?) 
for testing other components of the scripting framework. 

• Comparison: Store a complete set of splines from official 
releases, the last X validation releases (where X is probably 
one for automated comparisons). 

• ~20-50 grid jobs if we do one job per target (could choose to 
break up the Event Generator Lists). 

• Output at this stage is ~20-50 x ~20 MB files, which could be 
concatenated into a smaller set of files (or one file). 

• One for free nucleons, one for each element (favorites: 
He, C, O, N, Ar, Fe, etc. Minerva has ~20.). 

• Jobs in the next stage must load the file, and the 
inefficiency in loading unneeded cross sections is outweighed 
by simpler coordination.
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Generate Physics 
Predictions

• Each prediction is a unique snowflake. 

• Like snowflakes though, very topologically 
similar in terms of I/O requirements, etc. 

• Requires the cross section spline and support 
files: a flux and target specification (likely 
to complicated, but small): 

• e.g., the NuMI flux on the MINERvA geometry 

• Sometimes very simple, e.g. 500 MeV electrons 
on carbon
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Comparison 
Applications

• Each application is a unique snowflake. 

• Similar topologies... 

• Requires a published data set and the 
generator predictions file. 

• Jobs should be very fast (unless they are 
doing a complicated fit, etc.). 

• Output is plots and ROOT files (histograms 
and/or ntuples).

12



Gabriel N. Perdue, Fermilab Simulations for Neutrinos

Analysis Stage

• Vaporware. 

• In principle, not difficult to write a very 
basic placeholder that only does a few 
simple things. 

• Use the placeholder to design the I/O and 
workflow, then add features using only 
"physicist time."
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